首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29814篇
  免费   5692篇
  国内免费   3247篇
化学   21433篇
晶体学   324篇
力学   1775篇
综合类   143篇
数学   3007篇
物理学   12071篇
  2024年   47篇
  2023年   679篇
  2022年   756篇
  2021年   1080篇
  2020年   1412篇
  2019年   1369篇
  2018年   1146篇
  2017年   1014篇
  2016年   1590篇
  2015年   1465篇
  2014年   1895篇
  2013年   2331篇
  2012年   2832篇
  2011年   2889篇
  2010年   1884篇
  2009年   1787篇
  2008年   2002篇
  2007年   1742篇
  2006年   1631篇
  2005年   1282篇
  2004年   973篇
  2003年   748篇
  2002年   714篇
  2001年   562篇
  2000年   447篇
  1999年   583篇
  1998年   506篇
  1997年   490篇
  1996年   484篇
  1995年   428篇
  1994年   344篇
  1993年   279篇
  1992年   279篇
  1991年   225篇
  1990年   203篇
  1989年   153篇
  1988年   94篇
  1987年   82篇
  1986年   104篇
  1985年   76篇
  1984年   37篇
  1983年   44篇
  1982年   27篇
  1981年   22篇
  1980年   7篇
  1979年   2篇
  1976年   1篇
  1975年   1篇
  1957年   4篇
  1923年   1篇
排序方式: 共有10000条查询结果,搜索用时 32 毫秒
61.
CO2 is considered as the primary greenhouse gas, resulting in a series of serious environmental problems that affect people's life and health. Carbon capture and sequestration has been implemented as one of the most appealing pathways to control and use CO2. Here, we rationally integrate various functional sites within the confined nanospace of a microporous metal–organic framework (MOF) material, which is constructed by mixed-ligand strategy based on metal-adeninate vertices. It not only exhibits excellent stability but also can efficiently transform CO2 and epoxides to cyclic carbonates under mild and cocatalyst-free conditions. Additionally, this catalyst shows extraordinary recyclability for the CO2 cycloaddition reaction.  相似文献   
62.
Flexible control of building blocks of photonic crystals enables achieving desirable band structures. Exploration of photonic band extrema has brought many fantastic features to design artificial optical materials, such as Brillouin‐zone‐corner extrema for valley photonic materials and zone‐center extremum for zero‐index metamaterials. However, two such kinds of extrema are always found independently in different photonic crystals. In this work, a kind of valley photonic crystals possessing both zone‐center and zone‐corner band extrema almost at the same frequency is proposed. Inspired by antennas theory, a three‐antenna array (TAA) source is devoted to individually manipulate each extremum. The correlation coefficient is given to determine the coupling efficiency between the TAA source and extrema eigenmodes. By using a source with a high correlation coefficient, these extrema bulk states are selectively excited consistent with their eigenfields. Furthermore, three control cases are shown that multiple extrema points are simultaneously excited, in order to confirm the validity of the correlation coefficient. Finally, a potential application of a beam‐steering device is proposed through selective excitation of ternary extrema. This work develops binary valley states into ternary mix states, rendering more degrees of freedom for on‐chip optical information transport, particularly for beam steering and mode division multiplexing.  相似文献   
63.
A series of phenolic epoxy resin (PEP) modified polyurethane foams (PUF) were prepared via an in-situ polymerization, one step process. It was found that the epoxy modified PUF foam exhibited a perforated network structure with larger cell size, higher open cell porosity and enhanced ovality compared with pure PUF. With increasing content of PEP, the tensile strength, elongation at break and low temperature modulus of PUF decreased. A single Tg was observed for PEP modified PUF, indicating that the two component phases of the polyurethane-epoxy were miscible. With increasing PEP content, the Tg of PUF shifted slightly to higher temperature, tan δmax dropped to lower values, and the retention value of the storage modulus at ?20 and ?10?°C increased. For pure PUF, the cell walls degraded and the structure became disordered after aging under heat and stress, while for PUF/20wt%PEP, the degradation degree was obviously reduced, and an orientation of the cells along the stress direction and a density increase was observed. During aging at 200?°C, the retention of the mechanical properties of PUF/20wt% PEP was much higher than that of pure PUF, and it showed superior stability under heat and stress, attributed to incorporation of the thermally resistant oxazolidone rings and benzene rings in the PU backbones, the highly cross-linked networks of the polyurethane-epoxy systems and the obvious orientation of the cells under stress.  相似文献   
64.
This work presents a scalable approach for preparing spherical hollow mesoporous silica with high surface area/pore volume, serving as outstanding support for supported phosphotungstic acid catalyst with much superior catalytic performance to the one on previously reported spherical mesoporous silica toward diverse transformations, ascribed to the strengthened mass transfer and the enlarged exposure degree of acidic sites to reactants those resulting from unique hollow and mesoporous morphology.  相似文献   
65.
Notoginsenoside R1 (NGR1), a diagnostic protopanaxatriol‐type (ppt‐type) saponin in Panax notoginseng, possesses potent biological activities including antithrombotic, anti‐inflammatory, neuron protection and improvement of microcirculation, yet its pharmacokinetics and metabolic characterization as an individual compound remain unclear. The aim of this study was to investigate the exposure profile of NGR1 in rats after oral and intravenous administration and to explore the metabolic characterization of NGR1. A simple and sensitive ultra‐fast liquid chromatographic–tandem mass spectrometric method was developed and validated for the quantitative determination of NGR1 and its major metabolites, and for characterization of its metabolic profile in rat plasma. The blood samples were precipitated with methanol, quantified in a negative multiple reaction monitoring mode and analyzed within 6.0 min. Validation parameters (linearity, precision and accuracy, recovery and matrix effect, stability) were within acceptable ranges. After oral administration, NGR1 exhibited dose‐independent exposure behaviors with t1/2 over 8.0 h and oral bioavailability of 0.25–0.29%. A total of seven metabolites were characterized, including two pairs of epimers, 20(R)‐notoginsenoside R2/20(S)‐notoginsenoside R2 and 20(R)‐ginsenoside Rh1/20(S)‐ginsenoside Rh1, with the 20(R) form of saponins identified for the first time in rat plasma. Five deglycometabolites were quantitatively determined, among which 20(S)‐notoginsenoside R2, ginsenoside Rg1, ginsenoside F1 and protopanaxatriol displayed relatively high exploration, which may partly explain the pharmacodynamic diversity of ginsenosides after oral dose.  相似文献   
66.
Five monophosphine‐substituted diiron propane‐1,2‐dithiolate complexes as the active site models of [FeFe]‐hydrogenases have been synthesized and characterized. Reactions of complex [Fe2(CO)6{μ‐SCH2CH(CH3)S}] ( 1 ) with a monophosphine ligand tris(4‐methylphenyl)phosphine, diphenyl‐2‐pyridylphosphine, tris(4‐chlorophenyl)phosphine, triphenylphosphine, or tris(4‐fluorophenyl)phosphine in the presence of the oxidative agent Me3NO·2H2O gave the monophosphine‐substituted diiron complexes [Fe2(CO)5(L){μ‐SCH2CH(CH3)S}] [L = P(4‐C6H4CH3)3, 2 ; Ph2P(2‐C5H4N), 3 ; P(4‐C6H4Cl)3, 4 ; PPh3, 5 ; P(4‐C6H4F)3, 6 ] in 81%–94% yields. Complexes 2 – 6 have been characterized by elemental analysis, spectroscopy, and X‐ray crystallography. In addition, electrochemical studies revealed that these complexes can catalyze the reduction of protons to H2 in the presence of HOAc.  相似文献   
67.
Guided by the self-penetrating features can improve the stability of metal organic frameworks (MOFs), an unprecedented 3D self-penetrated framework, {[Zn (tptc)0.5(bimb)]·H2O}n ( NUC-6 , here NUC corresponding to North University of China), with 3D (4,4)-c {86} net, was designed. Benefit from the high chemical stability and excellent luminescent property, NUC-6 can be act as an efficient multi-response chemo-sensor in detecting dichloronitroaniline pesticide and nitrofuran antibiotics in water with the detection limits are 116 ppb for DCN pesticide, 16 ppb for NFT antibiotic, and 12 ppb for NTZ antibiotic. Besides, the mechanisms of luminescence quenching were revealed from the viewpoint of internal filter effect (IFE) and photo-induced electron transfer (PET), implied by the optical spectroscopy and quantum chemical calculation. This work provides a promising strategy to design stable MOFs by improving the self-penetrating features and to expand their practical applications in the detection of organic pollutants in aqueous medium.  相似文献   
68.
The low-cost, high specific surface area and porosity, controlled pore size, and chemical properties of metal–organic framework (MOF) materials have attracted much attention in the exploration of proton conduction. The method of chemically modifying MOF structures or introducing conductive medium into the holes can effectively improve the proton conductivities of the materials. Here, the structural tunability of ionic liquid (IL) and flexible MOF (fle-MOF) materials are matched to give full play to the conductivity of IL, the framework support, and the microporous effect of MOFs, which achieves the synergistic effect of performance and expands the temperature range of proton transfer. Three kinds of CS/IL@fle-MOF membranes were prepared by combining three fle-MOFs with 1-carboxymethyl-3-methylimidazole (CMMIM) in different proportions to obtain 15 pieces of membranes. The comparative analyses show that CS/IL@fle-MOF membranes have excellent proton conduction performance at a wider temperature range (263–353 K) and lower relative humidity (75% RH). Among them, the proton conductivities of CS/CMMIM@MIL-88A-25% and CS/CMMIM@MIL-88B-125% are up to 1.33 and 1.42 S cm−1 at 75% RH and 353 K, respectively; whereas those of CS/CMMIM@MIL-53(Fe)-75% and CS/CMMIM@MIL-88B-125% reach up to 2.1 × 10−3 and 1.28 × 10−3 S cm−1 at 75% RH and 263 K, respectively. The Ea of CS/CMMIM@fle-MOFs is in the range of 0.1–0.5 eV, suggesting that the proton transport follows predominantly the typical Grotthuss transfer mechanism. The results of this study indicate that the CS/CMMIM@fle-MOF membranes combinations offer great potential for the design of composite porous proton-conducting materials.  相似文献   
69.
A novel metal-doped metal–organic framework (MOF) was developed by incorporating salen–Mg into NH2–MIL-101(Cr) structure under ambient conditions. The Schiff base complex was successfully prepared by condensing salicylaldehyde with a free amino group and then coordinating metal ions. Such a structure can endow the sample with higher CO2 adsorption performance. At 0°C and 1 bar, the salen–Mg-modified sample achieves the maximum adsorption capacity of 2.18 mmol g−1 for CO2, which was 5.8% higher than the pristine salen–MOF under the same conditions. Notably, the Freundlich model indicates that the CO2 adsorption process of all samples conforms to reversible adsorption. However, the correlation coefficients (R2) of the Mg-doped sample are lower than that of the pristine sample. Besides, the CO2/N2 adsorption selectivity and isosteric heat also show a similar trend. These results indicate that the salen–Mg can enhance the interaction between the material and CO2 molecules.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号